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1a,25-Dihydroxyvitamin D3 Inhibits Rat Liver
Ultrastructural Changes in Diethylnitrosamine-Initiated
and Phenobarbital Promoted Rat Hepatocarcinogenesis
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Abstract The active metabolite of vitamin D, 1a,25-dihydroxyvitamin D3[1,25(OH)2D3] has been receiving
increasing attention and has come to the forefront of cancer chemoprevention research as being a regulator of cellular
growth, differentiation and death. In the present study, attempts have been made to investigate the in vivo
chemopreventive effect of 1,25(OH)2D3 in two-stage rat liver carcinogenesis. Hepatocarcinogenesis was initiated with a
single intraperitoneal injection of diethylnitrosamine [DEN] (200 mg/kg b. wt.) at week 4. After a brief recovery period of
2 weeks, all the DEN-treated rats were given phenobarbital (0.05%) in the basal diet and continued thereafter till the
completion of the experiment. The results of our experiment showed that the rats which received 1,25(OH)2D3 for 14
weeks (0.3 mg/100 mL propylene glycol, per os, twice a week), starting the treatment 4 weeks prior to DEN injection,
exhibited maximum protective effect in maintaining the normal cellular architecture of the hepatocytes than the group of
rats which received this micronutrient for only 9 weeks. Moreover, continuous supplementation of 1,25(OH)2D3

maintains the concentration of hepatic microsomal cytochrome P-450 like that of normal vehicle control. Thus, long-
term supplementation of 1,25(OH)2D3 signi®cantly (P < 0:001) inhibits hepatic cytosolic lipid peroxidation, thereby
protecting the cell membranes from free-radical mediated damage. These results suggest that 1,25(OH)2D3 is useful in
the inhibition of rat liver carcinogenesis. J. Cell. Biochem. 81:357±367, 2001. ß 2001 Wiley-Liss, Inc.
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Study of the cellular changes that precede
the development of liver cancer in animals
exposed to chemical hepatocarcinogens has led
most investigators over the last 20 years to the
conclusion that hepatocellular carcinomas
arise by dedifferentiation of adult liver cells.
These studies have concentrated on a series of
lesions called ``foci'' and ``nodules'' which have
been designated ``premalignant'' [Farber and
Sarma, 1987]. Xenobiotics such as phenobarbi-
tal (PB), polychlorinated biphenyls and many
other compounds that induce hepatic biotrans-
formation enzymes, promote experimental

hepatocarcinogenesis in rodents previously
exposed to initiating carcinogens [Goldsworthy
and Pitot, 1985]. Several proposed biological
mechanisms for liver tumor promotion by PB
and other inducing xenobiotics have been
supported by experimental data [Kolaja et al.,
1996].

The biologically active form of vitamin D3,
1a,25-dihydroxyvitamin D3 [1,25(OH)2D3] is
an important regulator of cellular growth, dif-
ferentiation and death. 1,25(OH)2D3 is known
to mediate its cellular action through an intra-
cellular receptor, the vitamin D receptor
(VDR), having molecular properties similar to
those of the superfamily of steroid recep-
tors. 1,25(OH)2D3 binds to VDR that acts as
a ligand-inducible transcription factor. The
resulting genomic effects include partial arrest
in G0/G1 of the cell cycle and induction of differ-
entiation [Campbell et al., 1997]. Besides its
action on calcium homeostasis, 1,25(OH)2D3
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can in¯uence the expression of several genes
[Demay et al., 1990; Lemay et al., 1995], as well
as the proliferation and differentiation of nor-
mal and neoplastic cells in vitro [Manolagas
and Deftos, 1984; Abe et al., 1986].

Although the liver is the site of the C25-
hydroxylation of vitamin D, it has been shown
to have a very low proportion of VDRs (vitamin
D receptors) and, consequently, is not consid-
ered a target site of vitamin D action. However,
studies have demonstrated that calcium and/or
vitamin D de®ciency has signi®cant effect on
liver cell physiology [Bilodeau et al., 1995]. In
addition, experimental evidence indicates that
dietary calcium supplementation can protect
against early hepatic changes due to choline
de®ciency [Ghoshal et al., 1987], whereas both
calcium and vitamin D supplementation have
been shown to reduce the growth of 7,12-dime-
thylbenz(a)anthracene-induced mammary tu-
mors [Carroll et al., 1991]. In our recently
published article we have shown that 1,25
(OH)2D3 in combination with vanadium can
effectively inhibit DEN-induced rat liver
carcinogenesis [Basak et al., 2000].

Although vitamin D has been shown to pro-
mote the differentiation of cancer cells and
cell lines in vitro, the protective effect of
1,25(OH)2D3 status against an insult known
to induce neoplastic growth in vivo has not
been investigated. The purpose of the present
study is, therefore, to investigate, in vivo, the
in¯uence of 1,25(OH)2D3 status on the res-
ponse of a rat liver to a chemical insult known
to induce morphological and functional chan-
ges leading to the appearance of a rapidly
proliferating, pluripotent, ``stem'' cell compart-
ment, the oval cells, which are able to differ-
entiate into hepatocytes, ductular intestinal-
like or neoplastic cells [Nagy et al., 1994;
Golding et al., 1995].

MATERIALS AND METHODS

Chemicals

All the reagents and biochemicals, unless
otherwise mentioned, were obtained from
Sigma Chemical Co. (St. Louis, MO).

Treatment(s) of Rats

Male Sprague-Dawley rats (4 weeks old)
obtained from the Indian Institute of Chemical
Biology (CSIR), Calcutta, weighing 80±100 g
were used for experimentation. The animals

(4 rats/cage) were acclimatized to standard
laboratory conditions for 1 week before the
commencement of the experiment. During this
period, the rats were maintained on a semi-
puri®ed basal diet (Lipton, Calcutta, India) and
water ad libitum. All rats received humane
care according to the criteria outlined in the
``Guide for the Care and Use of Laboratory
Animals'' prepared by the National Academy of
Sciences and published by the National Insti-
tutes of Health (NIH publication 86-23, revised
1985).

Experimental Setup

The rats were divided randomly into ®ve
experimental groups (Fig. 1) according to our
previous experimental regimen [Bishayee and
Chatterjee, 1995]. Group A rats were the
normal vehicle control (received normal saline
once and 1,25(OH)2D3 vehicle for 14 weeks).
Group B, C and D rats received a single intra-
peritoneal (i.p.) injection of DEN at the rate of
200 mg/kg body weight at 9 weeks of age. After
a brief recovery of 2 weeks, all the DEN-treated
rats were given PB at 0.05% daily in the basal
diet till week 14. Group B was carcinogen
control. Treatment of 1,25(OH)2D3 (0.3 mg/
100 mL propylene glycol per os twice a week)
[Sardar et al., 1996] in group C rats was started
4 weeks prior to DEN injection and continued
thereafter till week 14 (Long-term continuous
study). In group D, 1,25(OH)2D3 treatment at
the same dose mentioned above was started
1 week after DEN injection and continued
thereafter till the completion of the experiment
(Promotion study). Group E was 1,25(OH)2D3

control (received 0.3 mg/100 mL propylene glycol
per os twice a week for the entire period of the
study). All the treatments were withdrawn at
week 14 and the rats were sacri®ced under
proper ether anesthesia at week 15 to carry out
different experiments.

Morphology and Morphometry of Liver

Soon after the sacri®ce, livers were promptly
excised from all the treated and control rats,
weighed and examined on the surface for
subcapsular macroscopic lesions (hyperplastic
nodules, HNs). The nodules with approximate
spheres were measured in two perpendicular
directions to the nearest millimeter into three
categories viz, �3, <3 to >1, and �1 mm
according to the published criteria of Moreno
et al. [1991].
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Transmission Electron Microscopy (TEM)
of Hepatic Tissue

Hepatic tissue was quickly excised, ®xed in
3% glutaraldehyde (in 0.1 M phosphate buffer,
pH 7.4) at 4�C for 1 h. After ®xation with glu-
taradehyde, the tissue was washed thoroughly
and ®xed in 1% osmium tetroxide (in phosphate
buffer) at room temperature for 1 h. The tissue
was then washed in water, dehydrated in gra-
ded ethyl alcohol and embedded in ERL-4602
medium. Ultrathin sections of about 500±600 AÊ

were cut with a glass knife by LKB ultrami-
crotome (Ultratome 48044). Sections were then
stained with uranyl acetate and lead acetate
[Epstein and Holt, 1963; Reynolds, 1963].

Preparation of Liver Fraction

The animals were sacri®ced with proper
anesthesia. Liver of either lobes were excised,
minced and homogenized with ice-cold 1.15%
(w/v) KCl solution (pH 7.4) in a te¯on coated
glass homogenizer to make a 10% (w/v) homo-
genate. The homogenate was then subjected to
the differential centrifugation. First, the homo-
genate was centrifuged at 9,000g for 30 min
and the resultant supernatant fraction was
centrifuged at 1,05,000g for 90 min in a Sorval-
OTD-50B Ultracentrifuge. The cytosolic frac-
tion was represented by the supernatant of the
ultracentrifugation and was stored at ÿ20�C
until further use. The pellet of 1,05,000g was

resuspended in one-tenth volume of homoge-
nizing buffer that served as the microsomal
fraction. All operations were performed at
0±4�C.

Enzyme Assays

Total hepatic cytochrome P-450 (Cyt. P-450)
in the liver microsomal fraction was measured
according to the method of Omura and Sato
[1964]. Hepatic cytosolic enzymatic lipid per-
oxidation was estimated according to the
method of Okhawa et al. [1979] which is based
on the formation of malondialdehyde (MDA).
Total hepatic cytosolic and microsomal protein
were estimated by the method of Lowry et al.
[1951] using bovine serum albumin as the
standard.

Statistics

All the data were analyzed by Student's t-test
and expressed as mean� standard deviation
(SD). Protection percentage was calculated by
applying the equation {(mean controlÿmean
treatment)7Mean control}� 100.

RESULTS

Effect of 1,25(OH)2D3 on Hepatic
Nodulogenesis

A signi®cant increase in the incidence of
hepatic HNs was observed in DEN�PB-treated
rats (Group B) (Table I). Long-term treatment

Fig. 1. Basic experimental regimen.
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of rats with 1,25(OH)2D3 for 14 weeks (Group C)
not only signi®cantly (P < 0:002) abated the
nodule multiplicity, but also reduced the total
number of nodules when compared with group
B rats. Moreover, in group C rats the number of
�3 mm sized nodules were appeared to be
reduced more than group D rats which received
1,25(OH)2D3 only for 9 weeks (promotion
study). In group D rats, the nodule multiplicity,
though inhibited compared to group B, was not
as signi®cant (P < 0:01) as group C.

Effect of 1,25(OH)2D3 on DEN-PB Induced
Changes in Rat Hepatic Ultrastructure

The structure and organization of the in-
ternal organelles in normal vehicle control
(Group A) (Fig. 2) and 1,25(OH)2D3 control
(Group E) rats appeared normal with no
detectable changes. Rats initiated with DEN
at week 4 and promoted by PB for 8 continuous
weeks (Group B) showed abnormal hepatic
architecture (Fig. 3). The most striking obser-

TABLE I. Effect of Long-Term Supplementation of 1a,25-Dihydroxyvitamin D3 on
Hepatic Nodulogenesis

No. of
rats with Nodules relative to Avg. no. of
nodules/ Nodule Total size (% of total no.) nodules/
total no. incidence no. of nodule

Group Treatment(s) of rats (%) nodules �3 mm < 3 to > 1 mm �1 mm bearing liver

B DEN�PB 8/8 100 118 50 30 38 14.75� 2.81a

(42.37) (25.42) (32.20)
C DEN�PB� 4/8 50 43 10 23 10 5.37� 5.83b

1,25(OH)2D3 (23.25) (53.49) (23.25)
(Long term)

D DEN�PB� 6/8 75 61 26 19 16 7.62� 4.95c

1,25(OH)2D3 (42.62) (31.15) (26.23)
(Promotion)

aValues are mean�SD.
bP < 0:002, signi®cantly different from DEN�PB control (Group B) by Student's t-test.
cP < 0:01, signi®cantly different from DEN�PB control (Group B) by Student's t-test.

Fig. 2. Electron micrograph of normal vehicle control rat
hepatocyte showing a round small nucleus (N) and many mito-
chondria (M). Presence of lysosomes (Ly) and rough surfaced

endoplasmic reticulum (rER) are also seen. Size and shape of the
bile canal (Bc) and basement membrane (arrowheads) appear
normal.
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vation was the substantial increase in the
quantity of agranular or smooth endoplasmic
reticulum (sER), in comparison with control
hepatocytes (Group A). An accompanying
decrease in glycogen stores was also observed,
the glycogen areas being smaller and fewer in
number. The granular or rough endoplasmic
reticulum (rER) appeared to be reduced in
quantity in the hepatocytes of DEN-treated
and PB-promoted rats. The Golgi zones were
situated, as in normal hepatocytes, near the
bile canaliculi. However, pronounced hypertro-
phy of the Golgi apparatus was observed in the
majority of hepatocytes. The bile canaliculi
were often enlarged and somewhat distorted.
Treatment of rats with 1,25(OH)2D3 for 14
(Group C) and 9 continuous weeks (Group D)
offered protection against DEN�PB-induced
changes to the hepatocytes. But this protection
was seemed to be more when 1,25(OH)2D3 was
started 4 weeks prior to DEN. The shape and
structure of nucleus as well as nucleolus and
nuclear membrane looked almost normal like
that of normal control hepatocytes (Group A)
(Fig. 4, 5). No detectable hypertrophy of the
Golgi apparatus was observed in this group
(Group C). However, a mild dilation and dis-
tortion of the Golgi cisternae and bile canaliculi
was observed in group D rats which received

1,25(OH)2D3 for 9 weeks only, i.e., started 1
week after DEN injection and continued there-
after for 9 continuous weeks (Figs. 6, 7). The
mitochondria in these groups (Group C and D)
were generally normal in form although in
group D rats there was a tendency for them to
be elongated. Though an increase in glycogen
content was observed in group C rats, but this
appears to be less than what was observed in
normal vehicle (Group A) and 1,25(OH)2D3

control (Group E) hepatocytes.

Effect of 1,25(OH)2D3 on Hepatic Microsomal
Cytochrome P-450 Concentration

A signi®cant decrease (P < 0:001) in the
concentration of hepatic microsomal Cyt.
P-450 was observed in DEN-initiated and
PB-promoted rats (Group B) (Table II) when
compared with the normal vehicle control
(Group A). Treatment with 1,25(OH)2D3 for
14 (Group C) and 9 weeks (Group D) signi®-
cantly increases the concentration of Cyt.
P-450 when compared with DEN�PB control.
It was observed that, when 1,25(OH)2D3 sup-
plementation was started 4 weeks before
initiation with DEN (Group C) the percentage
increase was higher (P < 0:001, 60%) than
when given after DEN (Group D) (P < 0:005,
42.4%).

Fig. 3. Electron micrograph of 14 weeks old
DEN�PB-treated rat liver cell. One shrunken
nucleus (N) with peripheral chromatin bodies and
a nucleolus are seen. Fewer but swollen and
rounded mitochondria (M) and scattered smooth
endoplasmic reticulum (sER) are also present.

1,25(OH)2D3 Inhibits Rat Liver Carcinogenesis 361



Effect of 1,25(OH)2D3 on Hepatic Cytosolic
Lipid Peroxidation

Table II depicts the effect of 1,25(OH)2D3 on
hepatic cytosolic lipid peroxidation in different
groups of rats treated with DEN and promoted

by PB. A signi®cant increase (P < 0:001) in the
total content of MDA was observed in DEN�
PB-treated rats (Group B) when compared with
the normal vehicle control (Group A). Contin-
uous treatment of rats with 1,25(OH)2D3 for 14
(Group C) and 9 weeks (Group D) signi®cantly

Fig. 5. Electron micrograph of DEN�PB�1,25(OH)2D3 (Long
term continuous)-treated rat liver showing a part of the nucleus
(N) and large, round numerous mitochondria (M). The basement

membranes of the two hepatocytes (arrowheads) look almost
normal.

Fig. 4. Electron micrograph of rat liver treated with DEN�PB�
1,25(OH)2D3 (Long term continuous). Round nucleus (N) with a
clear nucleolus, longer and parallely arranged rough endoplas-
mic reticulum (rER) and elongated but higher numbers of

mitochondria (M) with clear cell membranes are demonstrated.
The size of the bile canal (Bc) appears normal and lysosomes
(Ly) are present near the nucleus.
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(P < 0:001 and P < 0:002, respectively) redu-
ced this elevation compared to DEN�PB con-
trol (Group B). It was also observed that
supplementation of 1,25(OH)2D3 which started
4 weeks before initiation with DEN and
continued thereafter for another 10 weeks
(total 14 weeks) offered better protection

(53.04%) than group D in which 1,25(OH)2D3

was supplemented for only 9 weeks, starting
the treatment 1 week after DEN initiation
(38.27%). Supplementation of 1,25(OH)2D3

only in group E rats though increased the lipid
peroxidation compared to group A, but that was
statistically insigni®cant.

Fig. 6. Electron micrograph of DEN�PB�1,25(OH)2D3 (Pro-
motion)-treated rat liver. Micrograph shows basement mem-
brane (arrowheads), few lysosomes (arrow) and round nucleus

(N). Presence of smooth endoplasmic reticulum (sER) and a
Golgi zone (G) are also seen.

Fig. 7. Electron micrograph of DEN�PB�1,25(OH)2D3 (Pro-
motion)-treated rat liver showing slightly irregular surfaced
nucleus (N), round and elongated shaped mitochondria (M).

Proliferation of Golgi zones (G) and presence of smooth
endoplasmic reticulum (sER) are also seen.
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DISCUSSION

Cancer is a complicated and a serious disease
that can cause severe morbidity and mortality.
It is actually an abnormal growth in any part
of the body in which the growth rate exceeds
the normal body growth rate and does not co-
ordinate with the surrounding tissues. The
enzyme system of the endoplasmic reticulum
plays an important role in the detoxi®cation of
many drugs, chemical carcinogens, and other
toxic agents, it is also responsible for catalyzing
the metabolic activation of some substrates to
highly reactive free-radicals, alkylating or
arylating intermediates, which then react with
critical cellular macromolecules to initiate toxic
and carcinogenic events [Guengerich and Shi-
mada, 1991]. A link between the expression of
drug-metabolizing enzymes and the prolifera-
tion potential of preneoplastic cells has been
drawn by Farber and his colleagues. They
suggested that a decrease in monooxygenase
activity combined with increased levels of deto-
xifying phase II enzymes will allow preneo-
plastic cells to escape from toxic environmental
effects, thus leading to a selective proliferation
of these cells [Farber, 1984; Roomi et al., 1985].
The selective outgrowth of Cyt. P-450-de®cient
lesions during hepatocarcinogenesis would
then be related to alterations in regulatory
systems which affect both the expression of the
monooxygenases and the growth-controlling
components of the preneoplastic cell popula-
tion. Since chemical hepatocarcinogenesis pro-
ceeds through the early appearance of HNs, the
manifestation of phenotype alteration in the
nodules, especially alteration of Cyt. P-450
activity, is thought to contribute to the later
stage of chemical carcinogenesis. In the present

study we have found decreased activity of Cyt.
P-450 enzyme in DEN�PB treated rats (Group
B). This is in accordance with the results ob-
tained by several workers [AÊ stroÈm et al., 1983;
Buchmann et al., 1987; Tsuda et al., 1988]. In
this case, the decrease in Cyt. P-450 level would
not be an obligatory prerequisite for growth,
but a phenotypical indication of alterations
in the regulation of homeostasis within pre-
neoplastic and neoplastic cells. The observed
decrease in Cyt. P-450 expression during
development of malignancy does not result
from an irreversible block in enzyme synthesis,
possibly due to the alterations in the Cyt. P-450
encoding structural genes, but may rather be
related to changes in the constructive regula-
tion of these enzymes. This decrease may
further be involved in the control of plasma
membrane Ca2� permeability which may have
some role in carcinogenesis as it is reported
that a Cyt. P-450 may be the link between the
intracellular calcium stores and plasma mem-
brane Ca2� channels [Alvarez et al., 1991]. The
results obtained with 1,25(OH)2D3 (Group C
and D) explain the stabilization of Cyt. P-450 in
the rats. Again, Cyt. P-450 is a constituent of
25-hydroxyvitamin D3-1a hydroxylase [Chen
et al., 1993], the enzyme responsible for activa-
tion of 1,25(OH)2D3. It competes with the 25-
hydroxyvitamin D3-1a hydroxylase resulting
in catabolic inactivation of 1,25(OH)2D3 and
thereby prolonging the actions of the
1,25(OH)2D3. Thus, knowledge on the hepatic
Cyt. P-450 content of a particular tumor type
and a better understanding of the impact of
1,25(OH)2D3 on this enzyme will undoubtedly
be of great use for designing therapies.

It was shown previously that 1,25(OH)2D3

inhibits the appearance of g-glutamyltranspep-

TABLE II. Effect of Long-Term Supplementation of 1a,25-Dihydroxyvitamin D3 on Hepatic
Microsomal Cytochrome P-450 Concentration and Cytosolic Lipid Peroxidation

Cytochrome P-450
Total no. conc. (nmol/mg Lipid peroxidation

Group Treatment(s) of rats microsomal protein) (nmol MDA/mg protein)

A Normal vehicle control 8 0.59� 0.04a 0.83� 0.31
B DEN�PB control 8 0.33� 0.04* 20.25� 4.5*

C DEN�PB�1,25(OH)2D3 (Long term) 8 0.53� 0.05** 9.51� 2.64**

D DEN�PB�1,25(OH)2D3 (Promotion) 8 0.47� 0.07*** 12.50� 2.8****

E 1,25(OH)2D3 control 8 0.58� 0.06 2.78� 0.79

aValues are Mean�SD.
*P < 0:001, signi®cantly different from normal vehicle control (Group A) by Student's t-test.
**P < 0:001, signi®cantly different from DEN�PB control (Group B) by Student's t-test.
***P < 0:005, signi®cantly different from DEN�PB control (Group B) by Student's t-test.
****P < 0:002, signi®cantly different from DEN�PB control (Group B) by Student's t-test.
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tidase-positive and glucose 6-phosphate-nega-
tive foci in rats after treatment with DEN and
2-acetylamino¯uorene [He and Gascon-Barre,
1997]. A striking observation of the present
study was that the long-term treatment with
1,25(OH)2D3 in group C rats has most signi®-
cant effect (P < 0:002) in inhibiting nodule
multiplicity as well as HNs of � 3 mm size
from the DEN�PB control (Group B). Although
it is evident that not all the hepatocytes nodule
become cancerous during the life span of the
animals, numerous observations do support the
concept that the nodules are the precursors of
hepatic cancer [Farber, 1980]. In view of this,
inhibition and regression of nodule growth by
1,25(OH)2D3 treatment may be important for
cancer prevention.

The lipid peroxidation and membrane pro-
tein damage are common devastating conse-
quences of oxygen-derived free-radicals, and
the production of structural and functional
deformities of tissues has frequently been
suggested [Esterbauer, 1982]. Their exact
mechanism of action is still obscure and
ambiguous. MDA is most frequently used as a
measure for the rate and the extent of lipid
peroxidation in biological samples [Slater,
1982] and the metabolic fate of this aldehyde
has been extensively studied [Siu and Draper,
1982]. Nevertheless, MDA, a product of lipid
peroxidation of poly unsaturated fatty acid
(PUFA) metabolism and degradation, has been
reported to be carcinogenic and mutagenic
[Lawrence and Melissa, 1980]. In our present
experiment, we have found that long-term
continuous treatment with 1,25(OH)2D3 (Group
C) rather than post-DEN treatment (Group D)
effectively reduces the formation of MDA in
the liver. Wiseman [1993] has shown the
ability of vitamin D in inhibiting iron-depen-
dent lipid peroxidation in liposomes and has
suggested that this may be of importance in
protecting the membranes of cells against
free radical-induced oxidative damage, as it is
possible that this highly lipophilic compound
may accumulate in membranes to achieve
the concentrations found to inhibit lipid
peroxidation.

Electron microscopic observation revealed
that a normal liver cell contains usual orga-
nelles with a particularly rich supply of mito-
chondria as well as rER. The Golgi complex is
especially prominent. The endoplasmic reticu-
lum is often arranged in parallel rows [Gartner

and Hiatt, 1997]. There were evident differ-
ences between carcinogen control cell structure
distributions and normal control cells, espe-
cially in the nuclear pattern, array of endo-
plasmic reticulum, mitochondrial distribution,
existence of lipid droplets, Golgi apparatus,
and lysosome distributions. In the present
experiment, we have also observed severe liver
damage in DEN�PB-treated cells (Group B).
Enlarged and marginated nucleoli were found
in metabolically active non-neoplastic cells
while Golgi complex was poorly developed in
the rapidly proliferating neoplastic cells. Fewer
but enlarged mitochondria with considerable
variation in the number and length of the
cristae were present in the carcinogen control.
Since many neoplastic cells depend upon
anaerobic glycolysis for their energy require-
ments, large numbers of mitochondria were not
needed to provide the energy necessary for
rapid cell growth [Erlandson, 1994]. Supple-
mentation of 1,25(OH)2D3 reduced the severity
of nuclear and mitochondrial damages, regu-
lated the pattern and number of rER with clear
cell membranes and less lipid droplets existed
in the cells, eventually showing similar cell
structure with normal control cells. But this
protective effect of 1,25(OH)2D3 seems to be
less in group D rats where it was supplemented
only for 9 weeks starting the treatment 1 week
after initiation with DEN. Long-term, contin-
uous supplementation of 1,25(OH)2D3 in group
C rats resulted in larger stacked segments of
rER, less swollen mitochondria and higher
numbers of mitochondria outside the nucleus
(Figs. 4, 5) indicating its better chemothera-
peutic effect. It was reported that the degree of
irregularity of the nucleus is related to the
degree of malignancy of the cells or to the
extent of damage [Henderson et al., 1992].
Such nucleolar changes are indicative of active
protein synthesis and rapid cell proliferation
[Erlandson, 1994]. Liver cells of normal rats
treated with 1,25(OH)2D3 do not show any
signi®cant damage/change in the cells. These
results strongly suggest that 1,25(OH)2D3 does
not have any toxic effect on the non-neoplastic
cells.

Regardless of the mechanism, the evidence
presented here shows that 1,25(OH)2D3 is very
much effective in preventing DEN�PB-in-
duced changes to the hepatocytes possibly
through stabilizing the drug-metabolizing
enzyme as well as inhibiting lipid peroxidation.
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